Climate data supporting climate services Nov. 2013 # International longterm climate database HISTALP Chimani B., Ganekind M., Auer I., Andre K., Nemec J. Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Austria As climate zones do cross borders an easy access of climate data in neighbouring countries can be of great value. Individual data request can be tiring for both the institution needing data for their research and the institution in charge of these data. The installation of a common database in combination with a webpage containing the essential information on the dataset can be an easy solution for those problems, as the data will be updated regularly and can be accessed by the user via web. HISTALP is an example for such a database for the Greater Alpine Region (GAR). GAR (4-19°E, 43-49°N) including information on station location (dots) and climate regions (colors, black lines) Aim of HISTALP: Providing easy access to high quality data for climate research and the interested public # Content of HISTALP: - quality controled, homogenised monthly data for the GAR for different climatological parameters - olimate information on different climate regions in the GAR - Gridded datasets (monthly resolution) for different parameters and resolutions for GAR of absolute values or differences to climate mean 1961-1990 - 💊 Main Climate Parameters: Temperature, Precipitation, Sunshine duration, Pressure # Monthly Mean Temperature February 1929 (*C) # Operational activties - data collecting - data quality control - writing newsletter informing about the current year/half-year in the context long term climate change - personal communication - ✓ every~10 years redoing homogenisation run # Data quality Correction of outliers Plausibility check # 0 - original time incorporate breaks Example of a homogenised time serie (red), the changes to the original data (blue) and information on the uncertainty of the homogenisation. Comparision of precipitation time series # Homogenisation former method: Craddock new method: HOMER Breakdetection using network of at least 5 reference stations Breakdetection using maximum likelyhood approach choice of additive and relative adjustments according to parameter correction with ANOVA-method successfully implemented at MeteoFrance already startet re-homogenisation of monthly temperature # Control Section (1997) De die Charter Marchander M # Future of HISTALP Finishing rehomogenisation for temperatur, precipitation, pressure and sunshined duration 库 Improving quality of humidity information and cloudiness including daily data (at least for Austria) # Literature: A more complete list of citations can be found at: www.zamg.ac.at/histalp Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin-J-M, Begert M, Müller-Westermeler G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E, 2007. HISTALP— Historical instrumental climatological surface time series of the greater Alpine region 1760-2003. International Journal of Climatology 27. 17-40 Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J, Vertachnik G, Klancar M, Dubuisson B, Stepanek P, 2013: HOMER: a homogenization software – methods and applications, IDÖJÁRÁS- Quarterly Journal of the Hungaria Meteorological Service, 117, 47-67